隠れ層を追加して精度を改善する【Keras】
前回に引き続いて直感DeepLearningより。前回のプログラムを実行しても精度はあまり良くありませんでした。たぶん90%に届かないくらいであるかと思います。学習回数を10回にするとそんなものになりました。深層学習の名の通り、隠れ層を増やすと精度が上がることを検証してみます。
ソースコード
from __future__ import print_function import numpy as np from keras.datasets import mnist from keras.models import Sequential from keras.layers.core import Dense, Activation from keras.optimizers import SGD from keras.utils import np_utils np.random.seed(1671) # for reproducibility # network and training NB_EPOCH = 10 BATCH_SIZE = 128 VERBOSE = 1 NB_CLASSES = 10 # number of outputs = number of digits OPTIMIZER = SGD() # SGD optimizer, explained later in this chapter N_HIDDEN = 128 VALIDATION_SPLIT = 0.2 # how much TRAIN is reserved for VALIDATION # data: shuffled and split between train and test sets # (X_train, y_train), (X_test, y_test) = mnist.load_data() # X_train is 60000 rows of 28x28 values --> reshaped in 60000 x 784 RESHAPED = 784 # X_train = X_train.reshape(60000, RESHAPED) X_test = X_test.reshape(10000, RESHAPED) X_train = X_train.astype('float32') X_test = X_test.astype('float32') # normalize # X_train /= 255 X_test /= 255 print(X_train.shape[0], 'train samples') print(X_test.shape[0], 'test samples') # convert class vectors to binary class matrices Y_train = np_utils.to_categorical(y_train, NB_CLASSES) Y_test = np_utils.to_categorical(y_test, NB_CLASSES) # 10 outputs # final stage is softmax model = Sequential() model.add(Dense(NB_CLASSES, input_shape=(RESHAPED,))) model.add(Activation('relu')) model.add(Dense(N_HIDDEN)) model.add(Activation('relu')) model.add(Dense(NB_CLASSES)) model.add(Activation('softmax')) model.summary() model.compile(loss='categorical_crossentropy', optimizer=OPTIMIZER, metrics=['accuracy']) model.fit(X_train, Y_train, batch_size=BATCH_SIZE, epochs=NB_EPOCH, verbose=VERBOSE, validation_split=VALIDATION_SPLIT) score = model.evaluate(X_test, Y_test, verbose=VERBOSE) print("\nTest score:", score[0]) print('Test accuracy:', score[1])
精度は上がりました
90%をコンスタントに超えられるようになりました。次はドロップアウトを追加することで精度を更に改善できるということを検証しましょう。